Abstract

High-nitrogen Fe-18Mn-18Cr-N austenitic steels with higher yield strength have been recently developed and used for generator retaining rings because they have non-magnetic, high strength, high ductility, and good corrosion resistance. In the present study, a high-nitrogen Fe-18Mn-18Cr-0.61N austenitic steel was fabricated and then tensile and Charpy impact tests were conducted on them in order to investigate the effect of cold working on the mechanical properties. Although the yield and tensile strengths usually increased with cold working, the ductility and impact toughness significantly decreased after cold working. On the other hand, the high-nitrogen austenitic steel exhibited a ductile-brittle transition due to unusual brittle fracture at low temperatures despite having a face-centered cubic structure. The ductile-brittle transition temperature obtained from Charpy impact tests could be remarkably increased by <TEX>$60^{\circ}C$</TEX> after 20% cold working because of the enhanced cleavage-like brittle fracture.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call