Abstract
π-Extended porphyrins represent an attractive class of organic compounds because of their unique photophysical, optoelectronic, and physicochemical properties. Herein, cross-conjugated (Ace-PQ-Ni) and linear-conjugated (AM6) porphyrins are used to build double-layer heterojunction devices by combining them with a lutetium bisphthalocyanine complex (LuPc2). The heterojunction effect at the porphyrin-phthalocyanine interface plays a key role in the charge transport properties. Both devices exhibit exceptionally high ammonia sensitivity at room temperature and under ambient relative humidity, with limit of detection values of 156 and 115 ppb for Ace-PQ-Ni/LuPc2 and AM6/LuPc2 sensors, respectively. Interestingly, the Ace-PQ-Ni/LuPc2 and AM6/LuPc2 sensors display opposite effects upon light illumination. While the former sensors show largely decreased ammonia sensitivity under light illumination, the current variation of the latter under ammonia is remarkably enhanced with a multiplication factor of 13 and a limit of detection (LOD) of 83 ppb. The striking difference in their sensing properties upon light illumination is attributed to their different π-conjugation pathways (cross-conjugation versus linear conjugation).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.