Abstract

All 25 Lick/IDS spectral indices have been computed for the integrated light of simple stellar populations over broad ranges of age and metallicity and with effects from horizontal-branch stars fully implemented. Our models employ α-enhanced isochrones at the sub-solar metallicity regime, but solar-scaled ones at solar and super-solar metallicity. We have also employed the updated response functions of Houdashelt et al. at the solar and super-solar metallicity regime, so that we could assess the light-element enhancement phenomena seen from metal-rich early-type galaxies. For Balmer indices a significant response was noted for Hγ and Hδ when α-elements are enhanced, but Hβ is rather α-insensitive. We also find that our 5 and 12 Gyr models of Hγ and Hδ overlap in the metal-poor regime because of changing populations of blue horizontal-branch stars. Furthermore, for populations younger than 1 Gyr, Balmer lines become weaker in the metal-poor regime because the main-sequence turnoff is hotter than 10,000 K. We present models at fixed [Fe/H] (rather than fixed heavy element mass fraction Z) and compare to Milky Way globular clusters that have independently estimated mean [Fe/H] and [α/Fe]. Comparison of our models with observations of Milky Way and M31 globular clusters in index-index space are favorable, tracing the observations at a model age of 12 Gyr without any zero-point shifts that are needed by some other models. The metallicity range of M31 globular clusters is similar to that of their Galactic counterparts. We also verify Beasley et al.'s recent hypothesis of the existence of young and intermediate-age star clusters in M31. Contrary to the literature values, the Milky Way globular cluster NGC 6553 appears more metal-rich than NGC 6528 from metal indices. We present Hδ and Hγ Lick/IDS indices for the Lick/IDS sample of galaxies. We confirm the well-known enhancement of Mg and Na relative to Fe and Ca among early-type galaxies, and its increase with increasing velocity dispersion. There are distinct differences between globular clusters and galaxies in diagrams involving CN1 and CN2, hinting that the globular cluster environment may be a special one in terms of the amount of N incorporated into stars.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call