Abstract

Morphological and pharmacological studies indicate that hypothalamic neuropeptide Y (NPY) and proopiomelanocortin (POMC) neurons communicate with each other in rats and regulate a variety of hypothalamic and extrahypothalamic functions. Indeed, electron microscopic studies revealed NPY-immunoreactive (NPI-IR) synapses on β-endorphin-IR neurons in the hypothalamus. However, no such connections have been reported in humans. Here, we studied the putative NPY-β-endorphin associations with high-resolution light microscopic double-label immunocytochemistry in the human hypothalamus. The majority of β-endorphin-IR perikarya appear to be innervated by abutting NPY-IR fibers in the infundibulum/median eminence, receiving more than 6 contacts (38% of the counted neurons) or three to six contacts (42% of the counted neurons). The rest of the β-endorphin-IR neurons are lightly innervated by NPY fibers (14%, one-three contacts) or do not receive any detectable NPY-IR axon varicosities (6% of the counted neurons). Since β-endorphin is cleaved from the proopiomelanocortin (POMC) precursor, the NPY-β-endorphin connections also provide the foundation for NPY-α-MSH and NPY-ACTH connections and their subsequent physiology. The close anatomical connections between NPY-IR nerve terminals and β-endorphin-IR neurons reported herein may represent functional synapses and provide the foundation for NPY-stimulated β-endorphin release. By interacting with β-endorphin, NPY may have a more widespread regulatory capacity than acting alone on different neurotransmitter systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call