Abstract

In contrast to all classical long-chain α-neurotoxins possessing the critical fifth disulfide bond, α-elapitoxin-Aa2a (α-EPTX-Aa2a), a novel long-chain α-neurotoxin from the common death adder Acanthophis antarcticus, lacks affinity for neuronal α7-type nicotinic acetylcholine receptors (nAChRs). α-EPTX-Aa2a (8850 Da; 0.1–1 μM) caused a concentration-dependent inhibition of indirect twitches, and blocked contractures to cholinergic agonists in the isolated chick biventer cervicis nerve-muscle preparation, consistent with a postsynaptic curaremimetic mode of action. α-EPTX-Aa2a (1–10 nM) produced a potent pseudo-irreversible antagonism of chick muscle nAChRs, with an estimated p A 2 value of 8.311 ± 0.031, which was not reversed by monovalent death adder antivenom. This is only 2.5-fold less potent than the prototypical long-chain α-neurotoxin, α-bungarotoxin. In contrast, α-EPTX-Aa2a produced complete, but weak, inhibition of 125I-α-bungarotoxin binding to rat hippocampal α7 nAChRs (p K I = 3.670), despite high sequence homology and similar mass to a wide range of long-chain α-neurotoxins. The mostly likely cause for the loss of α7 binding affinity is a leucine substitution, in loop II of α-EPTX-Aa2a, for the highly conserved Arg 33 in long-chain α-neurotoxins. Arg 33 has been shown to be critical for both neuronal and muscle activity. Despite this substitution, α-EPTX-Aa2a retains high affinity for muscle (α1) 2βγδ nAChRs. This is probably as a result of an Arg 29 residue, previously shown to be critical for muscle (α1) 2βγδ nAChR affinity, and highly conserved across all short-chain, but not long-chain, α-neurotoxins. α-EPTX-Aa2a therefore represents a novel atypical long-chain α-neurotoxin that includes a fifth disulfide but exhibits differential affinity for nAChR subtypes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call