Abstract

This article is the part of the review devoted to the description of modern approaches to the construction of interatomic potentials based on the embedded atom method (EAM) for various one-component materials. We consider the general ideology of the molecular (atomic) dynamics method and outline the shortcomings of the approach to modeling atomic systems using the classical pair-interaction potentials. The basic ideas and relations of the embedded atom method are presented, as well as various modifications of the method, including MEAM. The algorithm for numerical implementation of EAM potentials in calculations of molecular dynamic systems is considered, as well as the ways to improve the efficiency of the computational algorithms, including those related to the introduction of the cut-off radius and the justification of its choice for various materials. The review focuses on the methods of construction and types of embedding functions for a variety of materials, as well as the physical and mechanical properties of materials, which are well described in some kind of potential. A brief review of the methods for obtaining potential parameters is given, e.g. by using the quantum mechanical calculations (often referred to as first principles or ab initio) or using experimentally determined properties (diffraction, X-ray methods or electron microscopy), as well as a list of physical and mechanical properties that can be determined for a material using molecular dynamics methods with the application of modern potentials constructed by EAM. The authors have considered in detail the works which offer those potentials that (at present) most accurately describe the properties of such difficult (for forward modeling) materials, such as beryllium, iron, tungsten, niobium, titanium, uranium and others. The relevance of studying the structure and properties of these materials is largely due to the prospects of its application in materials for nuclear power engineering, aerospace industry, and biomedicine. Also, this review is devoted to the construction of EAM potentials capable for describing the structure and properties of a number of metals (lithium, nickel, copper, aluminum, etc.), which are considered both in the melt state and after crystallization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call