Abstract

alpha-dystroglycan (alpha-DG) is an agrin-binding protein that has been implicated in acetylcholine receptor (AChR) clustering, but it is unclear whether it acts as a coreceptor involved in initial agrin signaling or as a component involved in later events. To investigate its role, we have generated antisense derivatives of the C2 mouse muscle cell line, which have reduced alpha-DG expression. When compared with wild-type cells, the alpha-DG-deficient myotubes have a dramatic reduction in the number of spontaneous and agrin-induced AChR clusters. Several findings suggest that this decrease in AChR clustering is likely not because of a defect in agrin signaling through the MuSK receptor tyrosine kinase. Compared with wild-type cells, the alpha-DG-deficient cell lines showed only a transient reduction in the level of agrin-induced MuSK tyrosine phosphorylation and no reduction in AChR beta-subunit tyrosine phosphorylation. Additionally, agrin-induced phosphorylation of MuSK in wild-type myotubes was not decreased using agrin fragments that lack the domain primarily responsible for binding to alpha-DG. Finally, neural agrin-induced phosphorylation of MuSK was unaffected by treatments such as excess muscle agrin or anti-alpha-DG antibodies, both of which block agrin-alpha-DG binding. Together, these results suggest that alpha-DG is not required for agrin-MuSK signaling but rather that it may play a role elsewhere in the clustering pathway, such as in the downstream consolidation or maintenance of AChR clusters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call