Abstract

Background: For nuclei heavier than Pb-208 alpha decay is a dominating decay mode. alpha decay of odd nuclei can give spectroscopic information because different states in the daughter nucleus can be populated in the decay. Purpose: To explore and test microscopic descriptions of alpha decay of odd nuclei based on self-consistent models with effective nuclear interactions. To predict the hindrance of a decay of odd-A superheavy nuclei. Methods: We apply the method of our previous work [D. E. Ward, B. G. Carlsson, and S. Aberg, Phys. Rev. C 88, 064316 (2013)] to the case of odd-A near-spherical nuclei. The Skyrme effective interaction SLy4 is used. Starting from the obtained Hartree-Fock-Bogoliubov vacuum and quasiparticle excitations, the alpha-particle formation amplitude is calculated giving the decay rates and hindrance of different alpha-decay channels. Result: The calculated relative decay rates show good agreement with available data. The hindrance of decay channels where the odd nucleon changes orbital is reasonably described by the microscopic calculation. Several hindered ground-state decays of superheavy nuclei are predicted, implying possible alpha-gamma coincidences. Conclusions: The approach offers a practical method of making quantitative predictions for the relative hindrance of different alpha-decay channels. (Less)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.