Abstract

The effect of β-cyclodextrin modifications (polymerization (PCD) and later carboxymethylation (CMPCD)) on their action as enzyme stabilizers was analyzed during freeze-drying and thermal treatment. Combined polymer-trehalose matrices were also employed. Due to their higher T g values, PCD and CMPCD provided better structural stability to the freeze-dried formulations than β-CD. However, only PCD was a good excipient to protect invertase both in amorphous and supercooled systems. FT-IR revealed increased protein denaturation in the presence of CMPCD, but not in the presence of PCD. Even though all polymers inhibited/delayed trehalose crystallization, only trehalose (T) combined with PCD (PCD + T) and with β-cyclodextrin (β-CD + T) offered the best stability to the enzyme. In β-CD + T system, trehalose was the main responsible for the protection. In PCD + T system, both additives contributed to improve the enzyme stability. FT-IR and DSC were useful to analyze the combined role of molecular and supramolecular interactions on enzyme stability in dehydrated model systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.