Abstract

Thiol-lactam initiated radical polymerization (TLIRP) was successfully employed to prepare poly-N−5-acrylamidoisophthalicacid grafted onto Fe3O4 magnetic nanoparticles (MNPs@PAIP). β-Cyclodextrin (CD) was then conjugated to the carboxylic groups of the prepared MNPs via carbodiimide activation. Subsequently, tumor-targeting folic acid (FA) was attached to the hydroxyl groups of CD on the surface of the latter MNPs to increase the site-specific intracellular delivery. The prepared MNPs were fully characterized by FTIR, VSM, TGA, XRD, FE-SEM and TEM. Docetaxel (DTX) as hydrophobic anticancer drug was loaded via host-guest inclusion complexation with CD and the release profile of the system was studied at different pH. The effect of MNPs on the cell viability was evaluated for the human embryonic kidney normal cell line (HEK293) as well as HeLa and MDA-MB-231 cancerous cell lines and the results did not show any apparent cytotoxic effect. In comparison, DTX loaded MNPs reduced the growth of HeLa and MDA-MB-231 cells more than free DTX. Intracellular uptake ability of DTX loaded MNPs was also studied using fluorescent microscopy and showed cellular uptake about 90% after 4h treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.