Abstract

The main objective of the present study was to develop a nanoparticulate drug delivery system that can protect insulin against harsh conditions in the gastrointestinal (GI) tract. The effects of the following employed techniques, including lyophilisation, cross-linking and nanoencapsulation, on the physicochemical properties of the formulation were investigated. We herein developed a nanocarrier via ionotropic gelation by using positively charged chitosan and negatively charged Dz13Scr. The lyophilised nanoparticles with optimal concentrations of tripolyphosphate (cross-linking agent) and β-cyclodextrin (stabilising agent) were characterised by using physical and cellular assays. The addition of cryoprotectants (1% sucrose) in lyophilisation improved the stability of nanoparticles, enhanced the encapsulation efficiency, and ameliorated the pre-mature release of insulin at acidic pH. The developed lyophilised nanoparticles did not display any cytotoxic effects in C2C12 and HT-29 cells. Glucose consumption assays showed that the bioactivity of entrapped insulin was maintained post-incubation in the enzymatic medium. Freeze-drying with appropriate cryoprotectant could conserve the physiochemical properties of the nanoparticles. The bioactivity of the entrapped insulin was maintained. The prepared nanoparticles could facilitate the permeation of insulin across the GI cell line.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call