Abstract

The [Formula: see text]-convolution of real probability measures, introduced by Bożejko, generalizes both free and Boolean convolutions. It is linearized by the [Formula: see text]-cumulants, and Yoshida gave a combinatorial formula for moments in terms of [Formula: see text]-cumulants, that implicitly defines the latter. It relies on the definition of an appropriate weight on noncrossing partitions. We give here two different expressions for the [Formula: see text]-cumulants: the first one is a simple variant of Lagrange inversion formula, and the second one is a combinatorial inversion of Yoshida’s formula involving Schröder trees.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.