Abstract

AbstractΘ phase CuAl2 precipitate size evolution during coarsening at 310°C in 0.5 μm thick Al-2% (wt) Cu thin films was characterized by transmission electron microscopy. Films were sputter deposited onto oxidized Si substrates by standard techniques. The coarsening process preferred the growth of blocky Θ morphologies at Al triple points. Coarsening was via solute Cu diffusion along Al grain boundaries during annealing. The average Θ size dependence on annealing time (t) is approximately (t)1/4 in general agreement with models for particle coarsening along grain boundaries. Concurrent Al grain growth was shown to initially enhance the Θ coarsening rate above (t)1/4 behavior. This boundary coarsening process leads to a grain size dependence of the coarsening rate which has been observed in related and other previous work in thin films. These results are shown to be relevant for effects produced during accelerated electromigration testing, such as previous ‘curious’ 0 morphologies at triple points observed by others, the enhanced flux of Cu during testing, and possible mechanisms affecting electromigration failure processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.