Abstract

Ge, Si, InGaAs, GaInAsP photodiodes are used as optical radiation receivers and function in a spectral range of transparency of quartz fiberglass. For the optical systems operated in the increased radioactivity the photodetectors’ application on In2Hg3Te6 crystal base characterized by a photosensitivity in the spectral range of 0,5—1,6 mm and also by increased radiation resistance to alpha, beta and gamma radiation is most acceptable. Schottky photodiode structure was designed on the base of this semiconductor formed by a modified floating zone recrystallization technique where the sedimentation effect was leveled. It consists of n-In2Hg3Te6 substrate and deposited by cathode sputtering Cr barrier layer of thickness within a range 10—11 nm choice of Cr is determined by its optimal optical, electric and adhesive features in high quality radiation-resistant photodiode structures manufacturing. Indium and nichrome are used as ohmic contacts. The barrier structures have the contact area of 1,13 mm2 with photo response of 0,6—1,6 mm at the maximal sensitivity 0,43 A/W on the wavelength l,55 mm. Reverse dark current of these structures do not exceed 4 mA at the bias of 1 V (T=295 K), and the potential barrier height is equal to 0,41 eV. The tests of radiation resistance of these structures demonstrated their ability to function at doses of 2•108 rem without evident parameters changes. This allows using them in practical aims in the conditions of high radiation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.