Abstract
We study the Γ-convergence of a family of multiscale periodic quadratic integral functionals defined in a product space, whose densities depend on the time-derivative and on the curl of solenoidal fields, through the multiscale convergence in time–space and the multiscale Young measures in time–space associated with relevant sequences of pairs. An explicit representation of the Γ-limit density is given by means of an infinite dimensional minimization problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.