Abstract
High extinction coefficients and easily tunable spectral properties of π - conjugated donor-acceptor dyes are of superior advantage for the design of new metal- free organic sensitizers for applications in dye-sensitized solar cells. Ultrafast transient absorption spectroscopy on the femtosecond and nanosecond time scales provided deep insights into the dependence of charge carrier dynamics in fully organic dye/TiO2 systems on i) the donor-acceptor distance, ii) the π-conjugation length, and iii) the coupling to TiO2 by different anchoring groups. Importantly, the observed differences in charge transfer dynamics justify the variations of photovoltaic performances of the dyes as applied in solar cell devices. This leads to the conclusion that the photoconversion efficiencies strongly depend on a delicate interplay between the dyes’ building blocks, i.e. the donor, the π-conjugated spacer and the anchor/acceptor moieties, and may easily be tuned by molecular design.
Highlights
High extinction coefficients and tunable spectral properties of π conjugated donor-acceptor dyes are of superior advantage for the design of new metalfree organic sensitizers for applications in dye-sensitized solar cells
The observed differences in charge transfer dynamics justify the variations of photovoltaic performances of the dyes as applied in solar cell devices
One of the key roles in Dye-sensitized solar cells (DSSCs) is attributed to the sensitizers, which are responsible for light absorption and the generation of electric charges
Summary
High extinction coefficients and tunable spectral properties of π conjugated donor-acceptor dyes are of superior advantage for the design of new metalfree organic sensitizers for applications in dye-sensitized solar cells. Ultrafast transient absorption spectroscopy on the femtosecond and nanosecond time scales provided deep insights into the dependence of charge carrier dynamics in fully organic dye/TiO2 systems on i) the donor-acceptor distance, ii) the π-conjugation length, and iii) the coupling to TiO2 by different anchoring groups.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.