Abstract
By enabling the development of complex structures with adaptable qualities, techniques for additive manufacturing have opened new routes for material development and research. In this research, silicon nitride (Si3N4) ceramic nanoparticles are incorporated into polypropylene (PP) matrices. Various loading levels and standardized test specimens that adhere to ASTM criteria are created. The main goal is to thoroughly characterize these composites with an emphasis on their mechanical capabilities. The rheological, thermomechanical, and morphological properties of 3D-printed PP/Si3N4 composites created using material extrusion (MEX) 3D printing are examined. Thermogravimetric analysis and differential scanning calorimetry are exploited to study thermal stability and phase transitions in composite materials. Mechanical testing is conducted to determine mechanical qualities, such as flexural and tensile strength and modulus of elasticity. For detailed characterization of the nanocomposites, scanning electron microscopy, and Raman spectroscopy are also performed. The results provide insight into the impact of Si3N4 nanoparticles on the mechanical properties, thermal stability, and rheological behavior of PP/Si3N4 composites. The 2 wt% Si3N4 filler showed overall the best performance improvement (21% in the tensile modulus of elasticity, 15.7% in the flexural strength, and high values in the remaining properties assessed). The nanocomposite with the maximum Si3N4 loading of wt% showed a 33.6% increased microhardness than the pure PP thermoplastic, showing a promising wear resistance for the parts built with it. This research reveals the ability of Si3N4 ceramic nanoparticles to improve the mechanical characteristics of PP-based compounds produced by MEX 3D printing.Graphical
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.