Abstract

AbstractThe structural and magnetic properties of amorphous ferromagnetic microwires can undergo significant measurements under the action of external mechanical stresses and heat treatment. The study of transformations occurring in this case is important for designing various sensors of mechanical stresses, loading, and temperature and also for inducing in the wires a certain type of magnetic anisotropy that plays a significant role in the realization of various effects in them. In this work, the influence of external stresses and annealing on the processes of the magnetization and the magnetic impedance of Co_71Fe_5B_11Si_10Cr_3 microwires having a low positive magnetostriction (~10^-8) in amorphous state has been studied. The influence of external stresses leads to a sharp change in the character of the magnetization reversal curve, which was due to the change in the sign of the magnetostriction and the type of magnetic anisotropy. The amplitude of higher harmonics and the value of the magnetic impedance, respectively, are sensitive to mechanical stresses. Elastic stresses in the wires with a partial crystallization do not lead to a marked change in the magnetic properties; however, annealing can lead to a substantial increase in the axial magnetic anisotropy of the wires existing in the stressed state. The experimental results are analyzed in the framework of a magnetostriction model of induced magnetic anisotropy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.