Abstract

One-dimensional modeling of CH4/air premixed flame was conducted to validate the heat loss model and investigate NOx formation characteristics in the postflame region. The predicted temperature and NO concentration were compared to experimental data and previous heat loss model results using a constant gradient of temperature (100 K/cm). The following conclusions were drawn. In the heat loss model using steady-state heat transfer equation, the numerical results using the effective heat loss coefficient (heff) of 1.0 W/m 2 K were in very good agreement with the experiments in terms of temperature and NO concentration. On the other hand, the calculated values using the constant gradient of temperature (100 K/cm) were lower than that in the experiments. Although the effects of heat loss suppress NO production near the flame region, a significant difference in NO concentration was not found compared to that under adiabatic conditions. In the postflame region, however, there were considerable differences in NO emission index as well as the contribution of NO formation mechanisms. In particular, in the range of 0.8

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.