Abstract

Article history: Currently, CFRP composites are rapidly replacing steel plates, as they are lighter, stronger, and more elastic; however, they are poorly suited to hygrothermal and impact-collapsed environments because moisture can alter their molecule arrangement and chemical properties. In this study, environments are experimentally simulated in order to investigate changes in the moisture absorption inside a CFRP composite and to determine its weakest point. Moreover, changes in the moisture absorption ratio at temperatures of 60°C and 80°C are studied and compared in order to understand how changes in temperature affect moisture absorption inside CFRP composites. Results show that moisture absorption leads to a strength reduction of around 50%. In addition, the moisture absorption rate inside CFRP composites is shown to change rapidly with increasing temperature. Accordingly, it showed that the change in matrix also has a weak point.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call