Abstract

The distribution of Fos-immunoreactive (Fos-ir) and NADPH Diaphorase reactive (NADPH-dr-) neurons in the different subnuclei of amygdala and insular cortex (on the level -2,12 to -3,14 mm from bregma), and the associated changes of heart rate (HR) in intact, food-deprivated and executed food-procuring movements of rats were studied. In comparison with other groups of animals, the mean number of the Fos-ir neurons in the central nucleus of amygdala (Ce) and the insular cortex (GI/DI) at all studied levels was significantly greater in the executed food-procuring movements in rats. The main focus of localization of the Fos-ir neurons was found in lateral part of the Ce (58.5 +/- 1.9 units in 40-microm-thick section) at the level -2.56 mm. The mean number of Fos-ir neurons was significantly greater also in the lateral and capsular parts of the Ce. The mean number of Fos-ir neurons in the GI/DI was 165.5 +/- 3.2 cells in section. The number and density of NADPH-d reactive neurons was not significantly different in the brain structures of all animal groups studied. The double stained neurons (Fos-ir + NADPH-dr) were registered in medial, basolateral, anterior cortical amygdaloid nuclei and substantia innominata (SI) in rats after realization food-procuring movements. It was found that realization of food-procuring movements by the forelimb during repeated sessions was accompanied with the gradual decline of mean values of the HR (from 5% to 12% of control level) with subsequent renewal of them to the initial values (tonic component). The analysis of dynamics of the HR changes during realization of separate purposeful motion has shown the transient period of the HR suppression (500 ms), which coincided with the terminal phase of grasping of food pellet (phasic component). We suggest that the revealed focuses of localization of Fos-ir neurons in the lateral and medial subregions of amigdaloid Ce and also GI/DI, and SI testified that these structures of brain are involved in generation of the goal-directed motions. Direct projections of these subnuclei (and hypothalamus) to the cardiovascular centers of the medulla determine the associated regulation of the cardiovascular system function in the period of realization of the goal-directed motions in animals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.