Abstract

The role of canonical Wnt signaling in metabolic regulation and development of physiological cardiac hypertrophy remains largely unknown. To explore the function of β-catenin in the regulation of cardiac metabolism and physiological cardiac hypertrophy development, we used mice heterozygous for cardiac-specific β-catenin knockout that were subjected to a swimming training model. β-Catenin haploinsufficient mice subjected to endurance training displayed a decreased β-catenin transcriptional activity, attenuated cardiomyocytes hypertrophic growth, and enhanced activation of AMP-activated protein kinase (AMPK), phosphoinositide-3-kinase–Akt (Pi3K–Akt), and mitogen-activated protein kinase/extracellular signal-regulated kinases 1/2 (MAPK/Erk1/2) signaling pathways compared to trained wild type mice. We further observed an increased level of proteins involved in glucose aerobic metabolism and β-oxidation along with perturbed activity of mitochondrial oxidative phosphorylation complexes (OXPHOS) in trained β-catenin haploinsufficient mice. Taken together, Wnt/β-catenin signaling appears to govern metabolic regulatory programs, sustaining metabolic plasticity in adult hearts during the adaptation to endurance training.

Highlights

  • Endurance training causes the development of physiological heart hypertrophy, known as athletic heart

  • Training led to a significant increase in heart weight (HW)/tibia length (TL) in WT/WT, but there was no difference in the HW/TL ratio between WT/CKO trained and sedentary controls (p = 0.37)

  • The key role of canonical Wnt signaling in maladaptive heart remodeling is well established, since the activation of β-catenin is necessary for pathological heart remodeling, which is associated with cardiomyocytes hypertrophy [9,10,11,12,13,14,15]

Read more

Summary

Introduction

Endurance training causes the development of physiological heart hypertrophy, known as athletic heart. Pressure-induced pathological cardiac hypertrophy is orchestrated by calcineurin–nuclear factor of activated T cells pathway, Janus kinase–signal transducers, and activators of transcription pathway, Pi3K–Akt, MAPK/Erk1/2, canonical Wnt, and G-protein-coupled receptor signaling cascades [2,3], whereas physiological hypertrophy is accompanied by increased Pi3K–Akt and AMPK signaling activities [5]. Both physiological and pathological hypertrophy are characterized by increased cardiomyocytes size that is governed by common Pi3K–Akt and MAPK/Erk1/2 signaling pathways [6,7] which have crosstalks with β-catenin signaling [8]. It is tempting to suggest that β-catenin can be involved in the development of physiological hypertrophy

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.