Abstract

The aim of this study was to analyze the relationship between alveolar bone deformation and β-catenin expression levels in response to the mechanical load changed by dental extraction in adult rats. Twenty-four male rats (Rattus norvegicus albinus), Wistar linage, at 2 months of age, were used. The right upper incisor tooth was extracted, and euthanasia occurred in periods 5 (n = 6), 7 (n = 6), and 14 (n = 6) days after Day 0. In the control group (n = 6), the dentition was maintained. The euthanasia occurred within 14 days after day 0. After euthanasia, the rats of all groups had their left jaw with tooth removed and separated in the middle. The pieces were undergone routine histological processing and then the immunohistochemical marking were performed to label expression of the primary β-catenin antibody, which was evaluated by qualitative and quantitative analysis. One head by each group (control and experimental) was submitted to computerized microtomography. After the three-dimensional reconstruction of the skull of the rat in each group, the computational simulation for finite elements analysis were performed to simulate a bite in the incisors. In finite element analysis, the strain patterns were evaluated after the application of bite force. The results were analyzed considering the areas in which changes in the amount of deformations were detected. The action of the bite force in the experimental condition, resulted in a uniform distribution of the amount of deformations, in addition to lower amount of deformation areas, differentiating from the control group. Comparing with the control group, the levels of β-catenin signaled in the lingual bone of the middle third of the alveolar bone were raised in the periods of 5 and 14 days. The increased β-catenin positive staining intensity was concentrated on osteocytes and gaps of osteocytes. The findings of the present study were in accordance with our hypothesis that the condition of dental extraction can cause the expression of β-catenin and alter the regimes of bone deformation.

Highlights

  • The aim of this study was to analyze the relationship between alveolar bone deformation and β-catenin expression levels in response to the mechanical load changed by tooth extraction in adult rats

  • The action of the bite force resulted in distribution of lower strain magnitude than the control group, ranging up to 6 × 10−8 με (Figure 4) in the alveolar bone

  • We have found that this increased beta-catenin positive staining intensity was concentrated on osteocytes and gaps of osteocytes

Read more

Summary

Introduction

The periodontal ligament and the mineralized tissues support many functional loads and transmit them to alveolar bone. The magnitude, the direction, the frequency and the duration of these loads determine alveolar bone remodeling (Beertsen et al, 1997; Ho et al, 2010). Dental occlusal trauma plays an important role in alveolar bone remodeling and its effects includes many cytokines and signaling pathways. The exact mechanism of the traumatic stimulus for alveolar bone remodeling is still unclear (Wan et al, 2012). Changes in mechanical stimulation as a result of dental extraction can lead to changes in bone tissue. Traumatic occlusal forces are responsible for altering the expression of osteoblasts and osteoclasts genes, and may cause bone resorption (Walker et al, 2008)

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.