Abstract

α-Catenin plays a critical role in tissue integrity, repair, and embryonic development. However, the post-translational modifications of α-catenin and the correlative roles in regulating cancer progression remain unclear. Here, we report that α-catenin is acetylated by p300, and identify three acetylation sites, K45, K866, and K881. Conversely, α-catenin acetylation can be reversed by deacetylase HDAC6. Mechanistically, α-catenin acetylation releases the transcriptional coactivator Yes-associated protein 1 (Yap1) by blocking the interaction between α-catenin and Yap1, and promotes the accumulation of Yap1 in the nucleus. Through this mechanism, acetylation weakens the capacity of α-catenin to inhibit breast cancer cell proliferation and tumor growth in mice. Meanwhile, we show that CDDP induces acetylation of α-catenin, and acetylated α-catenin resists the apoptosis under CDDP conditions. Additionally, acetylation inhibits the proteasome-dependent degradation of α-catenin, thus enhancing the stability of α-catenin for storage. Taken together, our results demonstrate that α-catenin can be acetylated, an event that is key for the subcellular distribution of Yap1 and subsequent facilitation of breast tumorigenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.