Abstract

The inhibition of the aggregation in protein solutions is currently a subject of great interest in many research fields, from the study of protein-misfolding related diseases to pharmaceutics, biotechnology, and food science. α(s1)-Casein, one of the four types of caseins, which are the largest protein component of bovine milk, has been found to hinder the aggregation process of several proteins, including the amyloid β-peptide, involved in Alzheimer's disease. To shed light into the mechanisms by which casein exerts this chaperon-like protective action, we studied its effect on the different steps of the aggregation process of concanavalin A, by means of both static and dynamic light scattering, thioflavin T and ANS fluorescence, circular dichroism, and atomic force microscopy. Our results show that casein has a poor effect on the first step of the process leading to the formation of amyloid-like structures. On the contrary, it has a marked effect on the second step of the process, ascribable to clusters condensation and compaction, up to the formation of very large aggregates. Such an effect requires a molar ratio of casein larger than that necessary to inhibit the fibrillogenesis of the amyloid β-peptide, thus, suggesting a different mechanism of interaction of casein, depending on both conformational properties and relative size of the aggregating molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.