Abstract

A comparison of beta-casein and symmetrical triblock copolymer (PEO-PPO-PEO and PPO-PEO-PPO) adsorption layer properties at the air-water interface has been carried out by bubble tensiometry and ellipsometry. It has been verified that the equation of state parameters (pi approximately gamma(y)) obtained from surface pressure (pi) and ellipticity in Brewster conditions (rhoB), which is proportional to the surface concentration (gamma) data, are the same as those obtained from dilational modulus epsilon and pi data. These two consistent approaches give further support to the theoretical model of block copolymers which has been previously developed for protein adsorption at fluid interfaces. It is shown that the interfacial behavior of the copolymer adsorption layer changes strongly as a function of the length of the hydrophilic and hydrophobic block sequences. The theoretical model may be used for the interpretation of the adsorption properties of the synthetic copolymers only when the size of the blocks is large enough. In the case of block copolymers, the coil is in a self-avoiding walk conformation (y = 3) whatever the temperature, while in the case of beta-casein, the polypeptide chain is partly collapsed at room temperature due to thermolabile noncovalent bonds. At the end of the first semidilute regime, there is clear evidence for a crossover toward a second semidilute regime for synthetic copolymers as well as for beta-casein but it is presently only partially characterized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.