Abstract

The aim of this work was to study the effect and mechanism of β-carotene on insulin resistance and glucose transport in gestational diabetes mellitus (GDM). Placental tissue and venous blood of 26 GDM patients and 18 normal women were collected. Mice fed a high-fat diet were established as GDM models and treated with β-carotene, from which peripheral blood and placenta tissue were collected. HTR-8/SVneo cells were treated with 10-7 mol/L insulin for 48 h and established as insulin resistance cell models. The expression of SHBG, GLUT1, GLUT3, GLUT4, IRS-1, IRS-2, PI3Kp85α, and p-CREB/CREB in placental tissues and HTR-8/SVneo cells was detected. Insulin resistance index was calculated from the values of fasting blood glucose and fasting insulin. The glucose consumption of insulin-resistant cells was calculated by detecting the glucose content of the supernatant. The cyclic adenosine monophosphate (cAMP) kit was applied to measure the concentration of cAMP in cells. SHBG was lowly expressed in GDM. β-Carotene treatment upregulated SHBG in the placenta of GDM mice and in insulin-resistant HTR-8/SVneo cells. Overexpression of SHBG upregulated GLUT3, GLUT4, and IRS-1 and enhanced glucose consumption in insulin-resistant cells. β-Carotene treatment promoted the expression of SHBG, GLUT4 and IRS-1 and increased glucose consumption in insulin-resistant cells underexpressing SHBG. Silencing of SHBG decreased the levels of cAMP and pCREB/CREB but β-carotene treatment increased their expression despite SHBG silencing in insulin-resistant cells. β-Carotene promotes glucose transport and inhibits insulin resistance in GDM by increasing the expression of SHBG.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call