Abstract

To avoid the use of peracids oxidant or highly concentrated hydrogen peroxide which is potentially hazardous and explosive, herein, a new route to ε-caprolactone was developed in which molecule oxygen was employed as the terminal oxidant. The commercial available N-hydroxyphthalimide and ammonium cerium nitrate were used as the key catalysts for the increased yield of ε-caprolactone. For instance, the selectivity of ε-caprolactone was obtained 92 % with 85 % conversion of cyclohexanone which was comparable to the strategies using highly concentrated hydrogen peroxide. The sacrificed alcohols were transformed into corresponding ketones which were also valuable chemicals. Furthermore, the efficiency of the alcohols was achieved to unprecedented 52 %. The Baeyer-Villiger oxidation of various other cycloalkanones was also examined. The substituent group effect on the efficiency of sacrificed alcohols was investigated in which weak electron-donating substituent induced nearly quantitative yield of ε-caprolactone. The reaction mechanism was studied with the help of electron paramagnetic resonance which indicated the existence of a radical pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call