Abstract

Donghae city is one of the most representative cement industrial city in Korea. The area is faced with the East Sea to the East and with high montane region of Tae-Back mountain range to the West. Many pollutant sources of air pollution are located near the coast, but the largest point sources of the region are located at the bottom of the mountain area in Donghae city. The local wind is highly affected by local topography and plays an important role in transport and dispersion of contaminants from the pollution sources. This study was designed to evaluate enhancement of MM5 predictions by using Four Dimensional Data Assimilation (FDDA), the SONDE data and the national meteorological station, data only. The alternative meteorological fields predicted with and without FDDA were used to simulate spatial and temporal variations of NOx in combined with Atmospheric Dispersion Models (CALPUFF). For the modeling domain, the alternative meteorological fields with 1.1 km spatial resolution were interpolated to the CALMET with 0.5 km resolution. The vertical layers set to have 35 and 12 layers for MM5 and CALPUFF, respectively. MM5 with the FDDA did not resulted in significant improvement of meteorological field prediction in Donghae region, which is primarily because of complex geography and wind scheme. The result of CALPUFF, however, showed reduction of uncertainty errors by using the interpolation scheme of the actual measurement data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call