Abstract
Gram-negative bacteria have a cell envelope that comprises an outer membrane (OM), a peptidoglycan (PG) layer and an inner membrane (IM)1. The OM and PG are load-bearing, selectively permeable structures that are stabilized by cooperative interactions between IM and OM proteins2,3. In E. coli, Braun’s lipoprotein (Lpp) forms the only covalent tether between the OM and PG and is crucial for cell envelope stability4 but most other Gram-negative bacteria lack Lpp so it has been assumed that alternative mechanisms of OM stabilization are present5. We use a glycoproteomic analysis of PG to show that β-barrel OM proteins are covalently attached to PG in several Gram-negative species, including Coxiella burnetii, Agrobacterium tumefaciens and Legionella pneumophila. In C. burnetii, we found that four different types of covalent attachments occur between OM proteins and PG, with tethering of the β-barrel OM protein BbpA becoming most abundant in stationary phase and tethering of the lipoprotein LimB similar throughout the cell-cycle. Using a genetic approach, we demonstrate that the cell-cycle dependent tethering of BbpA is partly dependent on a developmentally regulated L,D transpeptidase (Ldt). We use our findings to propose a model of Gram-negative cell envelope stabilization that includes cell-cycle control and an expanded role for Ldts in covalently attaching surface proteins to PG.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.