Abstract

Carboxymethylcellulase를 생산하는 미생물을 해수에서 분리하여 16S rDNA의 염기서열을 분석하고 계통 발생학 방법으로 비교한 결과, Bacillus atrophaeus로 확인되었다. 이 해양 미생물을 B. atrophaeus LBH-18로 명명하였으며 response surface method (RSM)를 사용하여 carboxymethylcellulase의 생산 조건을 최적화하였다. 이 균주의 생육에 최적인 미강, 펩톤 및 배지의 초기 pH는 68.1 g/l, 9.1 g/l 및 7.0이었으나, carboxymethylcellulase의 생산에 최적인 조건은 각각 55.2 g/l, 6.6 g/l 및 7.1이었다. 이 균주의 생육과 carboxymethylcellulase의 생산에 최적인 온도는 <TEX>$30^{\circ}C$</TEX>이었다. 이 균주의 생육에 최적인 생물배양기의 교반속도 및 통기량은 324 rpm 및 0.9 vvm이었으나, carboxymethylcellulase의 생산에 최적인 조건은 각각 343 rpm 및 0.6 vvm이었다. 파이롯트 규모의 생물배양기를 사용하여 실험한 결과, 이 균주의 생육과 carboxymethylcellulase의 생산에 최적인 내압은 0.06 MPa이었다. 최적 조건의 내압으로 배양한 결과, 이 균주의 carboxymethylcellulase의 생산성은 127.5 U/ml이었으며, 이 결과는 내압을 가하지 않고 배양한 경우에 비하여 1.32배 향상된 것이다. 본 연구를 통하여 쌀 도정 공정의 부산물인 미강을 기질로 개발하였으며 해양 미생물을 사용하여 carboxymethylcellulase의 생산기간을 7~10일에서 3일로 단축시켰다. A microorganism producing carboxymethylcellulase (CMCase) was isolated from seawater and identified as Bacillus atrophaeus. This species was designated as B. atrophaeus LBH-18 based on its evolutionary distance and the phylogenetic tree resulting from 16S rDNA sequencing and the neighbor-joining method. The optimal conditions for rice bran (68.1 g/l), peptone (9.1 g/l), and initial pH (7.0) of the medium for cell growth was determined by Design Expert Software based on the response surface method; conditions for production of CMCase were 55.2 g/l, 6.6 g/l, and 7.1, respectively. The optimal temperature for cell growth and the production of CMCase by B. atrophaeus LBH-18 was <TEX>$30^{\circ}C$</TEX>. The optimal conditions of agitation speed and aeration rate for cell growth in a 7-l bioreactor were 324 rpm and 0.9 vvm, respectively, whereas those for production of CMCase were 343 rpm and 0.6 vvm, respectively. The optimal inner pressure for cell growth and production of CMCase in a 100-l bioreactor was 0.06 MPa. Maximal production of CMCase under optimal conditions in a 100-l bioreactor was 127.5 U/ml, which was 1.32 times higher than that without an inner pressure. In this study, rice bran was developed as a carbon source for industrial scale production of CMCase by B. atrophaeus LBH-18. Reduced time for the production of CMCase from 7 to 10 days to 3 days by using a bacterial strain with submerged fermentation also resulted in increased productivity of CMCase and a decrease in its production cost.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.