Abstract

Enhancing the performance of Gd3+ chelates as relaxation agents for MRI has the potential to lower doses, improving safety and mitigating the environmental impact on our surface waters. More than three decades of research into manipulating the properties of Gd3+ have failed to develop a chelate that simultaneously optimizes all relevant parameters and affords maximal relaxivity. Introducing aryl substituents into the α-position of the pendant arms of a GdDOTA chelate affords chelates that, for the first time, simultaneously optimize all physico-chemical properties. Slowing tumbling by binding to human serum albumin affords a relaxivity of 110 ± 5 mM-1 s-1, close to the maximum possible. As discrete chelates, these α-aryl substituted GdDOTA chelates exhibit relaxivities that are 2-3 times higher than those of currently used agents, even at the higher fields (1.5 & 3.0 T) used in modern clinical MRI.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call