Abstract

β-Arrestin2 has been identified to act as a corepressor of androgen receptor (AR) signaling by binding to AR and serving as a scaffold to affect the activity and expression of AR in androgen-dependent prostate cancer cells; however, little is known regarding its role in castration-resistant prostate cancer (CRPC) progression. Here, our data demonstrated that β-arrestin2 contributes to the cell viability and proliferation of CRPC via the downregulation of FOXO1 activity and expression. Mechanistically, in addition to its requirement for FOXO1 phosphorylation induced by IGF-1, β-arrestin2 could inhibit FOXO1 activity in an Akt-independent manner and delay FOXO1 dephosphorylation through the inhibition of PP2A phosphatase activity and the attenuation of the interaction between FOXO1 and PP2A. Furthermore, β-arrestin2 could downregulate FOXO1 expression via ubiquitylation and proteasomal degradation. Together, our results identified a novel role for β-arrestin2 in the modulation of the CRPC progress through FOXO1. Thus, the characterization of β-arrestin2 may represent an alternative therapeutic target for CRPC treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.