Abstract
The chemical importance of the linear response kernel from conceptual Density Functional Theory (DFT) is investigated for some σ and π aromatic and anti-aromatic systems. The effect of the ring size is studied by looking at some well known aromatic and anti-aromatic molecules of different sizes, showing that the linear response is capable of correctly classifying and quantifying the aromaticity for five- to eight-membered aromatic and anti-aromatic molecules. The splitting of the linear response in σ and π contributions is introduced and its significance is illustrated using some σ-aromatic molecules. The linear response also correctly predicts the aromatic transition states of the Diels-Alder reaction and the acetylene trimerisation and shows the expected behavior along the reaction coordinate, proving that the method is accurate not only at the minimum of the potential energy surface, but also in non-equilibrium states. Finally, the reason for the close correlation between the linear response and the Para Delocalisation Index (PDI), found in previous and the present study, is proven mathematically. These results show the linear response to be a reliable DFT-index to probe the σ and π aromaticity or anti-aromaticity of a broad range of molecules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.