Abstract
It has been proposed that genomic mechanisms contribute to adverse effects often experienced by asthmatic subjects who take regular, inhaled β2 -adrenoceptor agonists as a monotherapy. Moreover, data from preclinical models of asthma suggest that these gene expression changes are mediated by β-arrestin-2 rather than PKA. Herein, we tested this hypothesis by comparing the genomic effects of formoterol, a β2 -adrenoceptor agonist, with forskolin in human primary bronchial epithelial cells (HBEC). Gene expression changes were determined by RNA-sequencing. Gene silencing and genome editing were employed to explore the roles of β-arrestin-2 and PKA. The formoterol-regulated transcriptome in HBEC treated concurrently with TNFα was defined by 1480 unique gene expression changes. TNFα-induced transcripts modulated by formoterol were annotated with enriched gene ontology terms related to inflammation and proliferation, notably "GO:0070374~positive regulation of ERK1 and ERK2 cascade," which is an apparentβ-arrestin-2 target. However, expression of the formoterol- and forskolin-regulated transcriptomes were highly rank-order correlated and the effects of formoterol on TNFα-induced inflammatory genes were abolished by an inhibitor of PKA. Furthermore, formoterol-induced gene expression changes in BEAS-2B bronchial epithelial cell clones deficient in β-arrestin-2 were comparable with those expressed by their parental counterparts. Contrariwise, gene expression was partially inhibited in clones lacking the α-catalytic subunit (Cα) of PKA and abolished following the additional knockdown of the β-catalytic subunit (Cβ) paralogue. The effects of formoterol on inflammatory gene expression in airway epithelia are mediated by PKA and involve the cooperation of PKA-Cα and PKA-Cβ.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.