Abstract

α-FeOOH (goethite) and γ-FeOOH (lepidocrocite) were found to be the main corrosion products of the steel cathode in the sodium chlorate process; the identification of the phases formed under reducing potentials, along with the study of the electrodes during the reoxidation, is fundamental to understanding their role in this process. In this work, FeOOH-based electrodes were investigated through in situ and in operando X-ray absorption spectroscopy (XAS), combined to electrochemical measurements (e.g., voltammetry and chronoamperometry). At sufficiently negative potentials (below −0.4 V vs RHE ca.) and under hydrogen evolution conditions an unknown iron(II)-containing phase is formed. A comprehensive analysis of the whole XAS spectrum allowed proposing a structure bearing a relation with that of green rust (space group P3̅1m). This phase occurs independently of the nature of the starting electrode (α- or γ-FeOOH). During electrochemical reoxidation, however, the original phase is restored, meaning that the reduced phase brings some memory of the structure of the starting material. Spontaneous reoxidation in air suppresses the memory effect, producing a mixture of α and γ phases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.