Abstract

The emergence of drug-resistant pathogens has urged researchers to discover alternatives for traditional antibiotics. β-amyrin, which is included in the category of triterpenoids extracted from plants, is known for its antimicrobial activity, although the underlying mechanism has not yet been revealed. This study was conducted to elucidate the antifungal mode of action of β-amyrin against Candida albicans. Based on the relevance between triterpenoids and oxidative molecules, reactive oxygen species (ROS) concentrations were detected, which showed a noticeable increment. Disruption of Ca2+ homeostasis in the cytosol was additionally analyzed, which was supported by interactions between two. Subsequently, decrease in mitochondrial membrane potential, increment of mitochondrial Ca2+, and ROS concentration were monitored, which suggested mitochondrial dysfunction modulated by Ca2+. Further investigation confirmed oxidative damage through glutathione reduction and DNA fragmentation. Accumulation of lethal damages resulted in the activation of caspases and externalization of phosphatidylserine, indicating the induction of yeast apoptosis by β-amyrin in C. albicans.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.