Abstract

The present study is devoted to the development of a new class recyclable magnetic catalytic nanocomposites for starch hydrolysis. α-Amylase was entrapped within a magnetite-derived xerogel matrix in a course of a room-temperature sol-gel transition, leading to enzyme immobilization within the pores of a rigid magnetic matrix. For hybrid organo-inorganic composites with enzyme mass fractions less than 10 wt %, no enzyme leaching was observed. At 80 °C, the amylase@ferria composite demonstrates catalytic activity on the level of 10 units/mg and the starch hydrolysis rate comparable to free enzyme, while at 90 °C, the activity of amylase@ferria is at least twice higher than that of free amylase as a result of higher thermal stability of the composite. Entrapped amylase showed excellent stability and lost only 9% of its activity after 21 days of storage in a buffer solution, while free enzyme was totally inactivated after 17 days. The material can be used as either a magnetically separable reusable catalyst or a catalytic ceramic coating with at least 10 cycles of use.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call