Abstract

Salt stress is one of the main factors limiting plant growth and yield globally. Seed priming technique with different chemicals including β-aminobutyric acid (BABA) is found to be effective in enhancing plant growth and development under biotic and abiotic stresses. Scarce reports have been found about BABA seed priming in medicinal plants under stress conditions; however, several studies have been conducted on other crops but have not made an in-depth study to investigate biochemical and physiological changes. In current study the shoot growth, relative water content (RWC), chlorophyll content, stomatal conductance, nutrient content (N, P, K, Na and Cl), proline, malondialdehyde (MDA), hydrogen peroxide (H2O2) content, antioxidants enzymes (CAT, SOD and POD), membrane stability index (MSI), total phenolic and flavonoids contents lipid peroxidation and membrane permeability were investigated in Calendula officinalis L. leaves due to BABA seed priming and/or salt stress treatment. Salt stress treatment significantly reduced the growth characters, inflorescence number as well as its fresh and dry weights, N, P and K contents in leaves, RWC, chlorophyll content, stomatal conductance, MSI and total phenolic and flavonoids contents of pot marigold. However, proline content, MDA accumulation, H2O2 content and antioxidant enzyme activity (CAT, SOD and POD) were increased due to salt stress. On the other hand, seed priming with BABA significantly improved the growth characters, inflorescence attributes and the previously mentioned physiological and biochemical parameters investigated relative to the control. Applying seed priming under salt stress conditions significantly mitigated the negative effects of salinity and enhanced the growth and productivity of pot marigold and therefore was suggested to be an effective technique prior to cultivation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.