Abstract

To investigate whether treatment with γ-aminobutyric acid (GABA) alone or in combination with glucagon receptor (GCGR) monoclonal antibody (mAb) exerted beneficial effects on β-cell mass and α-cell mass, and to explore the origins of the regenerated β-cells in mice with type 1 diabetes (T1D). Streptozotocin (STZ)-induced T1D mice were treated with intraperitoneal injection of GABA (250μg/kg per day) and/or REMD 2.59 (a GCGR mAb, 5mg/kg per week), or IgG dissolved in PBS for 8weeks. Plasma hormone levels and islet cell morphology were evaluated by ELISA and immunofluorescence, respectively. The origins of the regenerated β-cells were analyzed by double-immunostaining, α-cell lineage-tracing and BrdU-tracing studies. After the 8-week treatment, GABA or GCGR mAb alone or in combination ameliorated hyperglycemia in STZ-induced T1D mice. GCGR mAb upregulated plasma insulin level and increased β-cell mass, and GABA appeared to have similar effects in T1D mice. However, combination treatment did not reveal any additive or synergistic effect. Interestingly, the GCGR mAb-induced increment of plasma glucagon level and α-cell mass was attenuated by the combined treatment of GABA. In addition, duct-derived β-cell neogenesis and α-to-β cell conversion but not β-cell proliferation contributed to the increased β-cell mass in T1D mice. These results suggested that GABA attenuated α-cell hyperplasia but did not potentiates β-cell regeneration induced by GCGR mAb in T1D mice. Our findings provide novel insights into a combination treatment strategy for β-cell regeneration in T1D.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call