Abstract

Powdery mildew disease, caused by Sphaerotheca fusca, is a major disease affecting cucumbers cultivated in greenhouses. This study was conducted to find defense genes induced by β-aminobutyric acid (BABA) and powdery mildew in cucumber. Disease severities of 25% and 5% were exhibited by the 2000 and 5000 mg/L BABA-treated cucumber, respectively. BABA did not affect the spore germination of the powdery mildew pathogen, showing that BABA is not an antifungal agent against the pathogen. In quantitative real-time PCR analysis, BABA-treated cucumber upregulated the transcriptional levels of the defense genes CsPAL, CsPR3, CsPR1, CsLOX1, CsLOX23, Cs LecRK6.1, CsWRKY20, and Cupi4 in cucumber to maximum levels at 48 h, whereas CsLecRK6.1 reached maximum expression after 24 h, and further, salicylic acid (SA) levels were significantly increased in BABA-treated cucumber plants. In addition, the cucumber infected with powdery mildew underwent a 1.6- to 47.3-fold enhancement in the defense genes PAL, PR3, PR1, Lox1, Lox 23, LecRK6.1, WRKY20, and Cupi4 compared to heathy cucumber. These results suggest that the BABA-induced defense response is associated with SA signaling pathway-dependent systemic acquired resistance (SAR) in cucumber, which is involved in plant resistance mechanisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call