Abstract

γ-Aminobutyrate, α-carboxy-2-nitrobenzyl ester (cGABA) is a stable photoactivatable probe used to study γ-aminobutyrate (GABA) receptors. GABA is released from this compound when it is exposed to ultraviolet light, but little is known about the electrophysiological effects of the compound itself. Whole cell patch clamp recordings on rat hippocampal slices demonstrated that cGABA blocked polysynaptic inhibitory postsynaptic currents (IPSCs) evoked in dentate granule cells by antidromic stimulation of the mossy fibers. It also reduced monosynaptically evoked IPSCs with an IC 50 of 28 μM. In contrast, cGABA had no effect on excitatory postsynaptic currents (EPSCs) evoked by perforant path stimulation. The effect of cGABA was not mediated by depression of GABA release through activation of presynaptic GABA B receptors. cGABA inhibited muscimol-evoked currents by only 15% at a concentration of 40 μM. At this same concentration, it reduced the mean frequency of miniature inhibitory postsynaptic potentials by 71%, their mean peak amplitude by 44%, their mean decay time constant by 26% and the mean charge transfer per event by 52%. These effects may be explained by a phenothiazine-like modification of GABA A receptor kinetics and/or a selective block of somatic GABA synapses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.