Abstract

Asymmetric Michael additions of carbonyl compounds to N-substituted maleimides are among the most convenient reactions to prepare optically pure succinimide building blocks. Although a few β-amino acids were found to be highly efficient organocatalysts in the addition of α-branched aldehydes, the effect of their structure on the results of these reactions has not yet been investigated. In the present study, we disclose several unexpected and interesting structural effects of aliphatic and cycloaliphatic β-amino acids obtained in the enantioselective conjugate addition of isobutyraldehyde to N-benzylmaleimide. The dependence of the sense of the enantioselectivity on the bulkiness of the substituent on the β-carbon atom, the beneficial spatial arrangements of the functional groups in cis isomers with cyclohexane scaffold and the inversion of the enantioselectivity depending on the absence of a base additive observed with some trans isomers are unprecedented findings. The minor influence of the nitrogen substituent of the maleimide ring on both the reaction rate and the enantioselectivity was also evidenced using alicyclic β-amino acid prepared from an easily available terpene derivative.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call