Abstract

The paper presents the low-temperature nitrogen adsorption, TG, XRD, IR spectroscopy, XPS, TEM and SEM data for ruthenium promoted (0.2–1wt.%) Сo-δAl2O3 catalysts and characteristics of the catalysts in Fischer-Tropsch synthesis after their activation under the conditions ensuring the reduction of comparable fractions of metallic cobalt. It was shown that cobalt in oxide precursors is a component of the spinel-like Со3-xAlxO4 phase containing the impurity anions СО32−, NO3−, ОН−, and NO in promoted samples, which belong to the thermolysis product of the Ru precursor. Average sizes of Со3-xAlxO4 crystallites are in a range of 5–10nm. As ruthenium content in the catalyst increases upon reduction, the temperature of metallic phase formation decreases substantially (by more than 150°C). After the reduction, selectivity of promoted catalysts for α-olefins and high-molecular hydrocarbons was higher in comparison with unpromoted catalysts, without a noticeable decrease in catalytic activity. Therewith, in 0.5–1.0wt.% catalysts, a part of ruthenium forms individual ultradispersed metallic particles ca. 1nm in size that are located on the surface of oxide support and are not active in Fischer-Tropsch synthesis. The oxide layer decorating the surface of metallic cobalt particles is also strongly enriched with ruthenium. In the 0.2wt.% catalyst, the major part of ruthenium resides in metallic cobalt particles. Although the ruthenium-cobalt alloy segregates with enrichment of the surface with cobalt, the presence of ruthenium in the metallic particles and probably in the decorating oxide layer exerts a considerable effect on selectivity of the catalysts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call