Abstract
In this paper, computer simulations of influence of high hydrostatic pressure on the mechanical properties such as elastic constants and moduli, intrinsic hardness and acoustic velocities of Al, Cu, CuAl3 and AlCu3 are provided. To simulate the energy of interaction in metals and alloys, the Sutton-Chen inter-atomic potential was used. The simulation was run using the geometry optimization method with the General Utility Lattice Program (GULP) 5.1. With increment of hydrostatic pressure, the values of mechanical characteristics increased sharply. The highest percentage of increase in the in the mechanical properties was shown in the pressure step from 0 to 100 GPa. On the pressure range [0, 100], the highest percentage of increase was shown on elastic constant C44 while the lowest percentage of increase was on the transversal acoustic velocity for aluminuim. As the amount of aluminium in the alloys increases, the longitudinal acoustic velocity reduced, while the elastic constants and moduli, as well as intrinsic hardness, increased.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.