Abstract

Sheet aluminum alloys used in manufacturing of machine structures for transportation show the difference of crack growth speed depending on thickness under the constant fatigue stress condition. The referred thickness effect is a major fatigue failure property of sheet aluminum alloys. In this work, we identified the thickness effect in fatigue test of thick plate and thin plate of Al 2024-T3 alloy under the constant fatigue stress condition, and presented the thickness effect to a correlative equation, which is determined by the shape factor, thickness ratio, and the loading factor, equivalent effective stress intensity ratio depending on thickness, . And we analyzed quantitatively the crack growth retardation behavior in thin plate compared to thick plate by the thickness effect using conversion method. We obtained such values as decrement of thickness(DoT), decrement of stress intensity factor range, (DoS) and identified the relation between them to present the nature of thickness effect in this work.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.