Abstract

Primary sclerosing cholangitis (PSC) is a cholestatic liver disease with high propensity to develop into cholangiocarcinoma. The hepatobiliary disorder of PSC is due to progressive fibrosis surrounding the intra- and extrahepatic bile ducts. Until now, no effective medical therapy exists. To study the progression of sclerosing cholangitis after inhibition of the sympathetic nervous system by blockade of the β-adrenoceptors, we used the Mdr2−/− mouse model, which develops periportal fibrosis similar to human PSC. Liver tissues of Mdr2−/− mice untreated or treated with the β-adrenoceptor antagonist propranolol were analyzed for inflammation and fibrosis progression at different time points by histological scoring and immunostaining for α-smooth muscle actin (α-SMA), CD45 and S100A4. Transaminases and hydroxyproline contents were determined. Expression of angiotensinogen, endothelin-1, TGF-β, TNF-α, CTGF and procollagen 1A1 was studied by real-time PCR on laser-microdissected areas of acinar zones I and II–III. After 3 months, periportal fibrosis had developed in Mdr2−/− mice, but immunostaining revealed no sinusoidal and only minor periportal contribution of myofibroblasts with prominent fibroblasts. Propranolol treatment of Mdr2−/− mice improved liver architecture. Additionally, inflammation and fibrosis were significantly reduced. After 3 months of treatment, the antifibrotic effect of the β-blockade was most obvious. The transcript levels of procollagen 1A1, TNF-α, TGF-β, CTGF and endothelin-1 were markedly repressed in the portal areas of treated mice. Taken together, these data show that propranolol efficiently delays progression of sclerosing cholangitis. Therefore, the blockade of β-adrenoceptors is a promising option to support future therapeutic strategies in the treatment of human PSC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.