Abstract

As the most prototypical G protein-coupled receptor, beta-adrenergic receptor (betaAR) regulates the pace and strength of heart beating by enhancing and synchronizing L-type channel (LCC) Ca(2+) influx, which in turn elicits greater sarcoplasmic reticulum (SR) Ca(2+) release flux via ryanodine receptors (RyRs). However, whether and how betaAR-protein kinase A (PKA) signaling directly modulates RyR function remains elusive and highly controversial. By using unique single-channel Ca(2+) imaging technology, we measured the response of a single RyR Ca(2+) release unit, in the form of a Ca(2+) spark, to its native trigger, the Ca(2+) sparklet from a single LCC. We found that acute application of the selective betaAR agonist isoproterenol (1 microM, < or = 20 min) increased triggered spark amplitude in an LCC unitary current-independent manner. The increased ratio of Ca(2+) release flux underlying a Ca(2+) spark to SR Ca(2+) content indicated that betaAR stimulation helps to recruit additional RyRs in synchrony. Quantification of sparklet-spark kinetics showed that betaAR stimulation synchronized the stochastic latency and increased the fidelity (i.e., chance of hit) of LCC-RyR intermolecular signaling. The RyR modulation was independent of the increased SR Ca(2+) content. The PKA antagonists Rp-8-CPT-cAMP (100 microM) and H89 (10 microM) both eliminated these effects, indicating that betaAR acutely modulates RyR activation via the PKA pathway. These results demonstrate unequivocally that RyR activation by a single LCC is accelerated and synchronized during betaAR stimulation. This molecular mechanism of sympathetic regulation will permit more fundamental studies of altered betaAR effects in cardiovascular diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call