Abstract

In this article, we extend the definition of γ-active constraints for linear semi-infinite programming to a definition applicable to convex semi-infinite programming, by two approaches. The first approach entails the use of the subdifferentials of the convex constraints at a point, while the second approach is based on the linearization of the convex inequality system by means of the convex conjugates of the defining functions. By both these methods, we manage to extend the results on γ-active constraints from the linear case to the convex case.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.