Abstract

The molecular function and fate of mRNAs are controlled by RNA-binding proteins (RBPs). Identification of the interacting proteome of a specific mRNA in vivo remains very challenging, however. Based on the widely used technique of RNA tagging with MS2 aptamers for RNA visualization, we developed a RNA proximity biotinylation (RNA-BioID) technique by tethering biotin ligase (BirA*) via MS2 coat protein at the 3' UTR of endogenous MS2-tagged β-actin mRNA in mouse embryonic fibroblasts. We demonstrate the dynamics of the β-actin mRNA interactome by characterizing its changes on serum-induced localization of the mRNA. Apart from the previously known interactors, we identified more than 60 additional β-actin-associated RBPs by RNA-BioID. Among these, the KH domain-containing protein FUBP3/MARTA2 has been shown to be required for β-actin mRNA localization. We found that FUBP3 binds to the 3' UTR of β-actin mRNA and is essential for β-actin mRNA localization, but does not interact with the characterized β-actin zipcode element. RNA-BioID provides a tool for identifying new mRNA interactors and studying the dynamic view of the interacting proteome of endogenous mRNAs in space and time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.