Abstract

The molecular function and fate of mRNAs are controlled by RNA-binding proteins (RBPs). Identification of the interacting proteome of a specific mRNA in vivo remains very challenging, however. Based on the widely used technique of RNA tagging with MS2 aptamers for RNA visualization, we developed a RNA proximity biotinylation (RNA-BioID) technique by tethering biotin ligase (BirA*) via MS2 coat protein at the 3' UTR of endogenous MS2-tagged β-actin mRNA in mouse embryonic fibroblasts. We demonstrate the dynamics of the β-actin mRNA interactome by characterizing its changes on serum-induced localization of the mRNA. Apart from the previously known interactors, we identified more than 60 additional β-actin-associated RBPs by RNA-BioID. Among these, the KH domain-containing protein FUBP3/MARTA2 has been shown to be required for β-actin mRNA localization. We found that FUBP3 binds to the 3' UTR of β-actin mRNA and is essential for β-actin mRNA localization, but does not interact with the characterized β-actin zipcode element. RNA-BioID provides a tool for identifying new mRNA interactors and studying the dynamic view of the interacting proteome of endogenous mRNAs in space and time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call